Staphylococcus aureus Infection Reduces Nutrition Uptake and Nucleotide Biosynthesis in a Human Airway Epithelial Cell Line

نویسندگان

  • Philipp Gierok
  • Manuela Harms
  • Karen Methling
  • Falko Hochgräfe
  • Michael Lalk
چکیده

The Gram positive opportunistic human pathogen Staphylococcus aureus induces a variety of diseases including pneumonia. S. aureus is the second most isolated pathogen in cystic fibrosis patients and accounts for a large proportion of nosocomial pneumonia. Inside the lung, the human airway epithelium is the first line in defence with regard to microbial recognition and clearance as well as regulation of the immune response. The metabolic host response is, however, yet unknown. To address the question of whether the infection alters the metabolome and metabolic activity of airway epithelial cells, we used a metabolomics approach. The nutrition uptake by the human airway epithelial cell line A549 was monitored over time by proton magnetic resonance spectroscopy (¹H-NMR) and the intracellular metabolic fingerprints were investigated by gas chromatography and high performance liquid chromatography (GC-MS) and (HPLC-MS). To test the metabolic activity of the host cells, glutamine analogues and labelled precursors were applied after the infection. We found that A549 cells restrict uptake of essential nutrients from the medium after S. aureus infection. Moreover, the infection led to a shutdown of the purine and pyrimidine synthesis in the A549 host cell, whereas other metabolic routes such as the hexosamine biosynthesis pathway remained active. In summary, our data show that the infection with S. aureus negatively affects growth, alters the metabolic composition and specifically impacts the de novo nucleotide biosynthesis in this human airway epithelial cell model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Staphylococcus aureus RN6390 replicates and induces apoptosis in a pulmonary epithelial cell line.

Staphylococcus aureus frequently colonizes the airways of patients with compromised airway defenses (e.g., cystic fibrosis [CF] patients) for extended periods. Persistent and relapsing infections may be related to live S. aureus bacteria actively residing inside epithelial cells. In this study, we infected a respiratory epithelial cell line, which was derived from a CF patient, with S. aureus R...

متن کامل

Radiolabeling of Ceftriaxone with 99mTc as a Targeting Radiopharmaceutical for Staphylococcus Aureus Detection in Mouse Model

Introduction Bacterial infection is one of the major causes of morbidity and mortality especially in developing countries. Nuclear medicine has an important role in helping the diagnosis of deep-seated infections by developing more specific radiopharmaceuticals. The aim of this study was to evaluate 99mTc-labeling ceftriaxone as a new radiopharmaceutical for Staphylococcus aureus infection imag...

متن کامل

Evaluation of the Anticancer Effect of Xanthium Strumarium Root Extract on Human Epithelial Ovarian Cancer Cells Using 1H NMR-Based Metabolomics

Epithelial Ovarian cancer is the leading cause of cancer mortality among women all over the world. As chemotherapeutics has many side effects, researchers have focused on the potential use of medicinal plants as natural antitumor agents. Xanthium strumarium studied in this work as an herbal anticancer agent. This study aimed to evaluate the antitumor effect and metabolic alterations ca...

متن کامل

Staphylococcus aureus Inhibits IL-8 Responses Induced by Pseudomonas aeruginosa in Airway Epithelial Cells

Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) are major respiratory pathogens and can concurrently colonize the airways of patients with chronic obstructive diseases, such as cystic fibrosis (CF). Airway epithelial cell signalling is critical to the activation of innate immune responses. In the setting of polymicrobial colonization or infection of the respiratory tract, how epithel...

متن کامل

Staphylococcus aureus protein A mediates invasion across airway epithelial cells through activation of RhoA GTPase signaling and proteolytic activity.

Staphyococcus aureus and especially the epidemic methicillin-resistant S. aureus strains cause severe necrotizing pneumonia. The mechanisms whereby these organisms invade across the mucosal epithelial barrier to initiate invasive infection are not well understood. Protein A (SpA), a highly conserved and abundant surface protein of S. aureus, activates TNF receptor 1 and EGF receptor (EGFR) sign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016